Root Finding Techniques | Secant Method

In this article, we will be going to study the Secant method in numerical analysis and design using Python. Algorithm Read a,b,E Compute f(a) and f(b) for i=1 to n in steps of 1 do m=af(b)-bf(a)/f(b)-f(a) if(|f(m)|<E) then a=b and b=m endif else Write does not converge a,b,f(a),f(b) endfor Write convergent solution m,f(m) stop Flowchart Program import math
def f(x):
return x*x*x - x -1


def secant(a,b):

if (f(a) * f(b) <0.0):
while True:
m=(a*f(b)-b*f(a))/(f(b)-f(a))
a=b
b=m

if (abs(f(m)) < 0.0001):
break
print("Root",round(m,4))
else:
print("Cannot find roots")

a =1.0
b = 2.0
secant(a, b) Example Q]Find the real root of the equation x^3-x-1=0 by secant method up to 4 decimal places? Solution- F(x)=x^3-x-1
To find x0 and x1
F(0)=-1 , F(1)=-1 , F(2)= 5

Root[1,2]
F(1.5)=0.875 , F(1.4)=0.343 , F(1.3)= -0.103

Changing x0= 1.3 and x1= 1.4
F(x0)= -0.103 and F(x1)= 1.323042

(First case) x2=x0*F(x1)-x1*F(x0) =1.323042
F(x1)-F(x0)
F(x2)= -0.007136

(Second case) x3=x1*F(x2)-x2*F(x1) =1.323605
F(x2)-F(x1)
F(x2)= -0.000481

(Third case) x4=x2*F(x3)-x3*F(x2) =1.324717
F(x3)-F(x2)
F(x2)= -0.000004
Hence the correct answer(root) up to 4 decimal places is x=1.3247 Happy Coding! Follow us on Instagram @programmersdoor Join us on Telegram @programmersdoor Please write comments if you find any bug in the above code, or want some updates. Follow Programmers Door for more. #secantmethod #rootfindingtechinques #NAD #numerical #analysis #design #maths #computer #science #question #python #programming

        Contact Us

programmersdoor@gmail.com

  • LinkedIn
  • Facebook
  • Instagram

©2023 by Programmers Door